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Abstract

Accurate speech activity detection is a challenging problem in
the car environment where high background noise and high am-
plitude transient sounds are common. We investigate a number
of features that are designed for capturing the harmonic struc-
ture of speech. We evaluate separately three important charac-
teristics of these features: 1) discriminative power 2) robustness
to greatly varying SNR and channel characteristics and 3) per-
formance when used in conjunction with MFCC features. We
propose a new features, the Windowed Autocorrelation Lag En-
ergy (WALE) which has desirable properties.

1. Introduction
Speech-silence discrimination and end-pointing important com-
ponents of many speech recognitions systems.

Speech-silence discrimination is a challenging problem in
the car environment where it is common to have high intensity
semi-stationary background noise and high amplitude transient
noises such as road bumps, wiper noise, door slams, tapping
etc. High SNR conditions are also commonly encountered, such
as when the car is stationary. We are therefore interested in
features that are highly discriminative while being very robust
to different conditions.

In this paper we focus on the inherent performance of the
features that should be independent of the higher level deci-
sion mechanism. Various decision mechanism have been pro-
posed such as likelihood ratio[1], HMMs [2] and hierarchical
HMMs[3].

A simple and effective feature for speech detection in high
SNR conditions is signal energy. Any robust decision mecha-
nism based on energy must adapt to the relative signal and noise
levels and the overall gain of the signal. In contrast, all the fea-
tures reviewed in this paper are gain invariant.

MFCC features are also effective for discriminating speech
from other environmental sounds although they were not de-
signed for this purpose. In particular, the Mel filter removes the
characteristics of excitation signal. For voiced sounds the ex-
citation signal is periodic glottal pulse train signal, which man-
ifests itself as harmonic structure in the spectrum (see Figure
1(b)).

Since MFCC features do not capture the harmonic struc-
ture of speech, an avenue of exploration is to extend the feature
space with features that succinctly capture the strength of voic-
ing of the signal.

An additional motivation for pursuing the structure of
voiced speech rather than that of unvoiced speech is that in the
car environment, unvoiced speech sounds are easily confusable
with wind, road and fan noise.
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2. Features for Voicing Detection
vestigated well known features and some recently intro-
features. These features are:

Autocorrelation Peak Count

Spectral Entropy

Maximum LPC Residual Autocorrelation Peak

Spectral Autocorrelation Peak Valley Ratio

Maximum Autocorrelation Peak

Maximum Cepstral Coefficient

dition, we introduce an extension of the Maximum Auto-
lation coefficient that is designed to improve its robustness,
e:

Windowed Autocorrelation Lag Energy

hese features use either the autocorrelation or the spec-
or a combination in conjunction with an arbitrary non-
method for extracting a single measure. They all attempt
dense the harmonic structure of voiced speech into a sin-
efficient that is relatively efficient to compute.

Autocorrelation Based Features

ber of techniques in the literature are based on the auto-
lation of the signal [3, 4].
he periodic characteristic of speech signal makes it a good
date for searching for self-similarity, i.e. repetitions of the
d glottal pulse. However, the autocorrelation captures any
tive signal, including motor noise.
he standard un-normalized autocorrelation is

aj [k] =

N∑

n=k

xj [n]xj [n − k] (1)

xj is the j-th segment of the signal and k is the lag. The
orrelation can be normalized in a number of ways. In the
ro normalized autocorrelation each lag is divided by a[0].
nsures gain invariance[4].
he short-time normalized autocorrelation normalizes each
nt by the energy of that lag. Hence it normalizes both for
mber of lags, and the energy.

acorrj [k] =

∑N
n=k xj [n]xj [n − k]

(
∑N−k

n=1 xj [n]2)
1
2 (

∑N
n=k xj [n]2)

1
2 )

(2)

he methods based on the autocorrelation include the Max-
Autocorrelation Peak[4] which finds the magnitude or

r of the maximum peak within the range of lags that cor-
nd to the range of fundamental frequencies of male and



female voices. In our experiments, we used a range of 50Hz-
400Hz corresponding to 320-40 lags respectively at a 16kHz
sampling rate. Another measure is the Autocorrelation Peak
Count[3] or the number of peaks found in a range of lags.

For pitch estimation in high SNR conditions, it is advan-
tageous to remove the correlations of the vocal tract to reveal
an approximation the glottal pulse train. This can be done by
inverse LPC filtering. The Maximum LPC Residual Autocor-
relation Peak[5] measure is based on finding the peak of the
autocorrelation of LPC residual signal.
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Figure 1: (a) The PCM waveform of a segment of voiced
speech. Three glottal periods are shown. (b) The Normalized
Autocorrelation shows a distinctive ‘saw’ pattern centered at the
glottal period (lag 146 ≈ 109Hz fundamental at 16kHz sam-
pling rate ). The shaded box corresponds to a window of 30
lags. The energy of the autocorrelation lags in this window
corresponds to the WALE coefficient for the speech segment.
(c) The Log Spectrum shows regularly spaced harmonic peaks
characteristic of voiced speech. (d) The Cepstrum has a very
distinct peak corresponding to the fundamental frequency.

2.2. Spectrum Based features

The Spectral Entropy [6, 3] measure is found by interpreting the
short-time spectrum as a probability distribution over a single
discrete random variable X and then calculating the entropy of
the distribution. The spectral distribution is found by normaliz-
ing the values of the short-time spectrum pX(f) = s(f)∑N

k=1 s(k)

where s(f) is the spectral energy for frequency f , and pX is the
spectral distribution. Now we can calculate the spectral entropy
for frame j as

H(j) = −
N∑

k=1

pXj (k) log(pXj (k)) (3)

Due to the harmonic structure of voiced speech, it is expected
that voiced speech will have relatively low entropy while sta-
tionary background noise is expected to have high entropy. This
tendency can be seen in Figure 2. Various noise signals are also
expected to have low entropy such as alarms, brake squeaks and
sirens.

The Spectral Autocorrelation Peak Valley Ratio (SAPVR)
[7] measure was introduce in the context of usable speech detec-
tion. If the a single speaker is speaking, the spectrum will have
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arly spaced harmonic peaks. If two speakers are speak-
imultaneously, this structure will be distorted. SAPVR
the autocorrelation of the magnitude spectrum to detect
rmonic regularity. After this operation the maximal ratio
en first valley and second peak in the autocorrelation is
1.
he Cepstral Peak has been used for pitch estimation [9] as
s voice activity detection. The cepstrum is computed as

ceps = DCT (log(|FFT (x)|2)) (4)

x is a short segment of the signal2. It is well known that
w order cepstra characterize the vocal tract filter, whereas
gher capture the excitation. Figure 1(c) shows a clear peak
sponding to the excitation period.

order to better capture the peak, we ran a difference oper-
ver the cepstra, and then found the difference between the
um value and the minimum value. This produced better

s than directly using the maximum.

Windowed Autocorrelation Lag Energy
indowed Autocorrelation Lag Energy (WALE) measure is

ned as a robust extension of the Autocorrelation Maximum
Amplitude metric.
oiced speech is produced when the vocal cords produce a
l pulse train that is then filtered by the vocal tract. The
orrelation of a pulse train has a single peak at the lag cor-
nding to the period of the pulse train, which motivates the
f the Maximum Autocorrelation as a voicing indicator.
owever, the vocal tract introduces correlations and

ds out the energy somewhat. The signal decays rapidly
the glottal pulse and energy is concentrated in that region.

autocorrelation, this manifests itself as a ’saw’ pattern
n Figure 1(b). The motivation for the Windowed Autocor-
on Lag Energy is to better capture this structure by taking
ccount a short window where most of the energy should
ncentrated when the signal is voiced speech.
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To calculate this feature, we slide the window across the
autocorrelation lags, and calculate the energy of the lags in the
window, at each shift point. The maximum value is then re-
turned. A window of length 30 is shown as the shaded area in
Figure 1(b), centered at the maximum value. Hence WALE is
computed as

WALE(j) = max
l

l+W−1∑

i=l

|acorrj(i)|2 (5)

where acorrj is the vector of autocorrelation coefficients cal-
culated in Equation 2, W is the length of the lag window. In
our experiments W was set to 15 lags. Notice that when the
window is of length W = 1, WALE is equivalent to finding the
square of Max Autocorrelation.

To further improve robustness, we can take advantage of
the fact that voiced segments usually span a few consecutive
frames. Since the voicing period will not change dramatically
between consecutive frames, the maximum will be close in con-
secutive frames. We therefore define the Multi-Frame WALE
(WALEMF ) as

WALEMF (j) = max
l

l+W−1∑

i=l

j+β∑

t=j−α

|acorrt(i)|2. (6)

where α and β designate how many past frames and future
frames to consider, respectively. α and β were set to 1 in our
experiments. When using Gaussian Mixture Models to model
feature distributions, it is advantageous to use log(WALE) and
log(WALEMF ) instead.

4. Feature Evaluation
Three performance characteristics of the features are of particu-
lar interest to us: 1) their discriminative power, 2) their robust-
ness to different conditions 3) how well they complement the
MFCC features that are known to be effective features.

To assess these aspects of the features we collected a data-
set consisting of 3 male speakers and 3 female speakers. Each
speaker contributed about 10 minutes of speech data for a total
of about 1 hour of data. The data was collected in different cars
and a variety of conditions. An attempt was made to produce
the whole range of noise conditions, transient sounds and situ-
ations where speech detection might fail. As an example, the
data contains speech recorded when driving over road seams,
washboards, potholes and other rough surfaces. Data was also
collected by the roadside with door slams, trunk slams and with
open windows and trucks driving by at high speeds in heavy
rain. The data was collected on two channels where one chan-
nel recorded a far-field microphone mounted on the rear view
mirror and the second channel was of a head mounted close-
talking noise canceling microphone.

A portion of the close-talking data was hand labeled with
three tags: voiced, unvoiced and non-speech. In order to get a
similar labeling for the whole data-set, we ran forced alignment
with a speech recognition system and known transcriptions on
all the close-talking data. Phone models that correspond well
to voiced speech segments were then used as a ground truth for
voiced sounds. The recognition system also labeled non-speech
segments reliably. The labeling was used as the ground truth for
non-speech segments.
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sess the discriminative power of individual features we cal-
d two metrics of each feature when used alone; 1) the
etric KL distance between voiced and non-speech mod-
two noise and channel conditions, and 2) ROC curves

ing Segment False Accept and False Reject error rates.
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e 3: Symmetric KL distance between voiced distribution
on-speech distribution for far-field and close-talk condi-
High values are indicative of highly discriminative fea-

igure 3 shows the symmetric KL distance between
oiced) and p(x|non-speech) for all features in the far-field
tion and close-talk conditions. Note that in the close-talk
tion, all features performed well. In the far-field condition,
rformance of some of the features decreases considerably
Autocorrelation Peak Count and Spectral Entropy), when
stributions for speech and non-speech overlap. The cep-
and the Max Autocorrelation and log WALE continue to

rm well.

Robustness

sess the robustness of the features we also calculated the
etric KL distance of equivalent distributions between the
ld and the close-talking condition. This measure gives an
tion of how the features vary between two common condi-
i.e. the high SNR close-talking condition and a low SNR
far-field condition, and hence how they can be expected
form in new unseen conditions.
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onditions. A large value is indicative of a non-robust fea-



False Reject Rate 5.00% 10.00% 15.00% 20.00%
FA MFCC only 68.28% 42.33% 25.19% 13.45%

Max LPC residual 0.71% 4.52% 8.85% 15.63%
Acorr. Peak Count 0.06% 2.24% 1.34% -1.61%

Entropy 0.56% 5.04% 1.80% -4.50%
log SAPVR -0.48% -0.39% -3.15% -3.31%

Max Cep. coef. 0.96% -0.97% -3.07% -6.30%
Max Autocorr. -2.71% -0.52% -8.08% -11.88%

log WALE -1.38% -6.33% -12.15% -11.12%

Table 1: The table shows the relative percent change in False Accept rates w
numbers represent different points on an ROC curve. The baseline False A
row. Notice that the Max Autocorr feature and the log WALE feature perform
False Reject rate is desirable. The False Reject rate of 24.62% corresponds t
of rejecting voiced speech is equal to cost of accepting noise).

Figure 4 shows that noise distributions for Autocorrelation
Peak Count and Spectral Entropy change considerably, while
Max Autocorrelation and log WALE show relatively good ro-
bustness characteristics for both the noise and voiced speech
distributions.

4.3. Complement to MFCC features

To assess how well these feature complement the MFCC fea-
tures which were used in our baseline Speech Detection sys-
tem, we appended each of the features in turn to the 13 MFCC
features and noted the affect on False Alarm rate at a particu-
lar False Reject rate. The voiced speech and noise models were
trained on a large data-set consisting of in-car speech recorded
at 0mph, 30mph and 60mph. Each feature was modeled with
a 64 Gaussian mixture model. The models were combined as-
suming independence between the features. The test-set was
the 1-hour far-field test set mentioned in the experiments above.
The relative amount of low-SNR conditions and transient noises
in the test set was larger than in the training set.

Table 1 shows the effect of adding each feature in turn. The
numbers represent different points on an ROC curve. Differ-
ent False Rejection rates were achieved by artificially biasing
the prior probabilities of speech and noise models. In our ap-
plication, the cost of missing a speech vector is high and it is
desirable to select a low False Rejection rate.

The best improvement is achieved by selecting the features
at the bottom of the table. The log-WALE feature is slightly
better on average than the Max Autocorrelation feature. At low
False Reject rates, the log-WALE feature outperforms the Max
Autocorrelation feature.

It is interesting to note that inverse LPC filtering the sig-
nal prior to using the Max Autocorrelation is harmful to perfor-
mance. This may be due to this feature not being robust to the
types of noises in the test set that were not seen in the training
set. It is also interesting to note that adding any of these features
helps less when we bias towards low False Reject rates.

5. Discussion
We have evaluated a number of well-known voice activity fea-
tures as well as some features that have recently been proposed.
Our evaluation focused on performance in very difficult noise
conditions and the robustness to different noise and channel
conditions. We also introduced the Windowed Autocorrelation
Lag Energy feature that has advantages over the Maximum Au-
tocorrelation feature when low false reject rates are desirable.
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